ware Engineering

hool of Data & Computer Science
n Yat-sen University

O,
=
—
2
L
-
L
<
=
—
-
O
Vg

s @) ture

OUTLINE EEEEE

B 15 §EAL
B 1.6 ZEE AT

SOFTWARE TESTING: Approaches and Technologies 2/92

BEA%

e

B E AL
BT & W

HIEE IR (Agile Modeling, AM) JJ&TF Scott W. Ambler By Extreme
Modeling (XM, 2000). 20014 LA Kent Beck, Alistair Cockburn,
Ward Cunningham, Martin Fowler % A\ J9 '8 £ Snowbird, Utah &

1 (BUEES) , RER Agile fEAFTIRVRERR G L TIEH

KRB TR

HEEEE—MEE, MAZ—TRIAMERE. ERNREFH
ZSIESREPFNDE LR —EMEN . RVAISEE.

FHREBRIZ— 1M TENG R, MEXNEBE AR
#h7e, AN FREZRYE b BHE RS AT UE S 8EE TR

il 8 d
*E‘jﬂﬁiigo

http://agilemanifesto.org/

SOFTWARE TESTING: Approaches and Technologies

3/92

BEA%

e

B BUEH & it

B Manifesto for Agile Software Development m(Bl3EES)

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
WOI‘kjﬂg software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

SOFTWARE TESTING: Approaches and Technologies 4/92

SUN YAT-S5EN UNIVERSITY

BEA% EESEE
B HEEF AL

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value

Individuals and Interactions over processes and tools
Working Software over comprehensive documentation
Customer Collaboration over contract negotiation
Responding to Change over following a plan

That is, while there is value in the items on the right, they value the
items on the left more.

SOFTWARE TESTING: Approaches and Technologies 5/92

BEA% EESEE
B HEEF AL

Manifesto for Agile Software Development
BI—EEXEPRIBFEFNREALFZE, SENITHER
wAEN A . BHUEERATEIL T I THENR :

MEFER ST RiEFMIA
TERNEH 5T FR 8
EZERE1E ST SEIH
N M2 =T BIET X
Wk, REAMSENE, BINESNERINE.

SOFTWARE TESTING: Approaches and Technologies 6/92

BEA% EESEE
B HEEF AL

Manifesto for Agile Software Development
As Scott Ambler elucidated:

Tools and processes are important, but it is more important to
have competent people working together effectively.
Good documentation is useful in helping people to understand
how the software is built and how to use it, but the main point
of development is to create software, not documentation.
A contract is important but is no substitute for working closely
with customers to discover what they need.
A project plan is important, but it must not be too rigid to
accommodate changes in technology or the environment,
stakeholders' priorities, and people's understanding of the
problem and its solution.

SOFTWARE TESTING: Approaches and Technologies 7192

BEH% EEEEE

B BUEH & it

Manifesto for Agile Software Development
We follow these principles:

(1) Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

(2) Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

(3) Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

(4) Business people and developers must work together daily
throughout the project.

(5) Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

(6) The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

SOFTWARE TESTING: Approaches and Technologies 8/92

BEA% EESEE
B HEEF AL

Manifesto for Agile Software Development
We follow these principles:

(7) Working software is the primary measure of progress.

(8) Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

(9) Continuous attention to technical excellence and good design
enhances agility.

(10) Simplicity--the art of maximizing the amount of work not done--is
essential.

(11) The best architectures, requirements, and designs emerge from
self-organizing teams.

(12) At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

SOFTWARE TESTING: Approaches and Technologies 9/92

BEH% EEEEE

B BUEEF

&

BHEE 5B RA125% RN

(1)
(2)
(3)

(4)
(5)

(6)
(7)
(8)

(9)

KINREENBR, —REREIREAMEEREXZAFENERNRGEERZR
. o

RAAEX = KT, BIFEEFALFHE—H. ATEFRPHZSEMNE,
BIEEIEZEET,

ZEWZ A TIERVE M, HRJLESS—FNA, T REERE
B HA .

WEANRMAZARHINEESTE, IMBHRHE—XEAFIIN
HMAEMNMERAE, UMEIAROCEZINE . BEENFENTIE,
HWLUEE, AMARBFR.

NeRIBAAS, FREEEMRRFIELRESHNARNEEXM EIK-
AITEMBRHEHENEEZEE EnE.
BEUESIZEBSUHFEH %Y. Z1EA. AAXAGRFABRPERBEREER
H AR EEE.

IRFFA B K AR E A R, SUEREIHILLIEE.

(10) ABLEAR, ERRABLALETIEENZER.
(11) SEFHIZRHA . KA B BELREIPA .

(12) EIBA AR AN AEIR S AR, FHRULIBREES Sy

T3

SOFTWARE TESTING: Approaches and Technologies 10 /92

BEH% EEEEE

B BUEH & it

BIEE S EBER1255REN

(1) BIMNHxEZEEZNHR, BEIREMFEMIZTENENREGRFERF
= o

(2) WHBFEKRPTE—BEREMBHALEE. ZEETFRHEKRTE, &
MEFREEFME.

(3) AR AT ABVE S, BEAMNJLBAZILNBASE, B#iEHeT.

(4) AEPmMBERED, WSARSEFLZAREBXRE—RIE,

(5) HEmME AR, UMB{1AZOCEENE, SM{IAREENIMEME
¥, FHEHEMBIEBTHRIES.

(6) FILHEIRAAIEZERNIE], BN /DIE TG EEEXT HEEIAZIHR,

(7) AT LAERVE R EEFHER EEIBIR.

(8) HIEZIEEEBIHENHA L. MHA. AR ARFARPNIZEEBIREF
BARENHRIRE .

(9) XTEARBVIE IR KB AR I T B A Bh ST = F IR A BIE M

(10) A EERAR. EiERRARERLCAVENTIEENZEN,

(11) FAERZEH . BRI E BT BEELER.

(12) FIBA R EHA R B IR RE BB MBI E /I, #*Eﬁiimiﬁﬁfkdﬁ’ﬂiﬁ;z "
SOFTWARE TESTING: Approaches and Technologies 11/92

BEA% EEEEE

B BUEH & it
HEEF LRI EHF

HEALNSHEREEY “RAGERM, HFEtaMNENR
TR, EBFPEE.

BRI & R IR I & R =5 BE W X AR SR AJ gE tH BN RV AL AN AN
EMELEER M.

R A T ERTAEFKEMSRETHRIEHR T, FFME
7% B BARYVER T & 7E N

SOFTWARE TESTING: Approaches and Technologies 12 /92

BEA% EEEEE

B BUEH & it
BRI A ERREN
BHEA L2 —MUA L. AR, BFAENFAEERES

EH £8

ARy TR}

AR AERET, RHDENAERTIZ SN FIE 7 7l
K. ENTFHEZEHEERR MAUIET, FHBERRRE
T, BEERFATEITAHHE.

SOFTWARE TESTING: Approaches and Technologies 13/92

BEA% EEEEE

B BEEF &L

BUEH AR DLk
In H X< #F|z5 5 (Project Stakeholder) FYFRRE 5
IEFAER TH
SERES (TR, TH,. REHE, 8iFFERAMER)
M B (bban “Mhse”)
FITOERE — ol [ERTE L ZF#iEE)
BIEERENAE
&) B b JE AR
ANFFRRIER (£ modeling wall BIINES 5 & 5 RR)
Y1 E| F I T (B2 [MERTRBEEY]#R)
IMEEIEIR
At N —EE R
I IEREY
FEHAREENERERTR

SOFTWARE TESTING: Approaches and Technologies 14 /92

BEA% EEEEE

B BUEH A ELA

BUEH A4 FELEK
{5F FH 212454 (Ekan uml)
ZET N AR (pattern)
EFH IR E
EREREEZIER
HINEBRETRIZIR
RE IR RR IR
FERHNANAIR
NE| AN S EANEFHRE

SOFTWARE TESTING: Approaches and Technologies 15/92

BEH% EEEEE

B AEBEET A&

Agile at Scale (SEI Blog/SPRUCE -- Systems and Software Producibility
Collaboration Environment, SEI, CMU)
Why is Agile at Scale Challenging
Agile practices, derived from a set of foundational principles,
have been applied successfully for well over a decade and have
enjoyed broad adoption in the commercial sector, with the net
result that development teams have gotten better at building
software. Reasons for these improvements include
= increased visibility into a project and the emerging
product,
= increased responsibility of development teams, the ability
for customers and end users to interact early with
executable code, and
= the direct engagement of the customer or product owner
in the project to provide a greater sense of shared
responsibility.

SOFTWARE TESTING: Approaches and Technologies 16 /92

BEA% EESEE
B AR IEI &

Agile at Scale
Why is Agile at Scale Challenging
Business and mission goals, however, are larger than a single
development team. Applying Agile at Scale, in particular in
DoD-scale environments, therefore requires answering several
guestions in three dimensions:
(1) Team size
(2) Complexity
(3) Duration

SOFTWARE TESTING: Approaches and Technologies 17 192

BEA% EESEE
B AR IEI &

Agile at Scale

Why is Agile at Scale Challenging

(1) Team size. What happens when Agile practices are used in a 100-
person (or larger) development team? What happens when the
development team needs to interact with the rest of the business,
such as quality assurance, system integration, project
management, and marketing, to get input into product
development and collaborate on the end-to-end delivery of the
product? Scrum and Agile methods, such as extreme programming
(XP), are typically used by small teams of at most 7-to-10 people.
Larger teams require orchestration of both multiple (sub)teams
and cross-functional roles beyond development. Organizations
have recently been investigating approaches, such as Scaled Agile
Framework, to better manage the additional coordination issues
associated with increased team size.

SOFTWARE TESTING: Approaches and Technologies 18 /92

BEA% EESEE
B AR IEI &

Agile at Scale
Why is Agile at Scale Challenging
(2) Complexity. Large-scale systems are often large in scope relative to
the number of features, the amount of new technology being
introduced, the number of independent systems being integrated,
the number and types of users to accommodate, and the number
of external systems with which the system communicates. Does
the system have stringent (=57 BY) quality attributes (RE%F14%
) needs, such as stringent real-time, high-reliability, and security
requirements? Are there multiple external stakeholders and
interfaces? Typically, such systems must go through rigorous
verification and validation (V&V), which complicate the frequent
deployment practices used in Agile development.

SOFTWARE TESTING: Approaches and Technologies 19/92

BEA% EESEE
B AR IEI &

Agile at Scale
Why is Agile at Scale Challenging
(3) Duration. How long will the system be in development? How long
in operations and sustainment? Larger systems need to be in
development and operation for a longer period of time than
products to which agile development is typically applied, requiring
attention to future changes, possible redesigns, as well as
maintaining several delivered versions. Answers to these questions
affect the choice of quality attributes supporting system
maintenance and evolution goals that are key to system success
over the long term.

SOFTWARE TESTING: Approaches and Technologies 20/92

BEA% EEEEE

B AEBEET A&

Agile at Scale
10 Recommended Practices for Achieving Agile at Scale

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

Make team coordination top priority

Use an architectural runway to manage technical complexity
Align feature-based development and system decomposition
Use quality-attribute scenarios to clarify architecturally
significant requirements

Use test-driven development for early and continuous focus
on verification

Use end-to-end testing for early insight into emerging system
properties.

Use continuous integration for consistent attention to
integration issues.

Consider recent field study management as an approach to
manage system development strategically.

SOFTWARE TESTING: Approaches and Technologies 21/92

BEA% EESEE
B AR IEI &

W Agile at Scale
10 Recommended Practices for Achieving Agile at Scale
(9) Use prototyping to rapidly evaluate and resolve significant
technical risks.
(10) Use architectural evaluations to ensure that architecturally
significant requirements are being addressed.

SOFTWARE TESTING: Approaches and Technologies 22/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(1) Make team coordination top priority.

Scrum is the most common Agile project management method used
today, and primarily involves team management practices. In its
simplest instantiation, a Scrum development environment consists of
a single Scrum team with the skills, authority, and knowledge required
to specify requirements, architect, design, code, and test the
system. As systems grow in size and complexity, the single team mode
may no longer meet development demands. If a project has already
decided to use a Scrum-like project-management technique, the
Scrum approach can be extended to managing multiple teams with a
"Scrum of Scrums," a special coordination team whose role is to (1)
define what information will flow between and among development
teams (addressing inter-team dependencies and communication) and
(2) identify, analyze, and resolve coordination issues and risks that
have potentially broader consequences (e.g., for the project as a
whole).

@) F o X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 23/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale

(1) Make team coordination top priority.
A Scrum of Scrums typically consists of members from each team
chosen to address end-to-end functionality or cross-cutting concerns
such as user interface design, architecture, integration testing, and
deployment. Creating a special team responsible for inter-team
coordination helps ensure that the right information, including
measurements, issues, and risks, is communicated between and
among teams. Care needs to be taken, however, when the Scrum of
Scrums team itself gets large to not overwhelm the team. This scaling
can be accomplished by organizing teams--and the Scrum of Scrums
team itself--along feature and service affinities. We further discuss
this approach to organizing teams in our feature-based development
and system decomposition practice. Such orchestration is essential to
managing larger teams to success, including Agile teams.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 24/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale

(2) Use an architectural runway to manage technical complexity.
Stringent safety or mission-critical requirements increase technical
complexity and risk. Technical complexity arises when the work takes
longer than a single iteration or release cycle and cannot be easily
partitioned and allocated to different technical competencies (or
teams) to independently and concurrently develop their part of a
solution. Successful approaches to managing technical complexity
include having the most-urgent system or software architecture
features well defined early (or even pre-defined at the organizational
level, e.g., as infrastructure platforms or software product lines).

The Agile term for such pre-staging of architectural features that can

be leveraged by development teams is "architectural runway." The

architectural runway has the goal of providing the degree of stability

required to support future iterations of development. This stability is

particularly important to the successful operation of multiple teams.

A system or software architect decides which architectural features

must be developed first by identifying the quality attribute

requirements that are architecturally significant for AT \q‘tetm‘t = _
SOFTWARE TESTING: Approaches and Technologies 25/92

HiEF

F& EEERE

B AEBEET A&

10 Recommended Practices for Achieving Agile at Scale
(2) Use an architectural runway to manage technical complexity.

By initially defining (and continuously extending) the architectural
runway, development teams are able to iteratively develop customer-
desired features that use that runway and benefit from the quality
attributes they confer (e.g., security and dependability).

Having a defined architectural runway helps uncover technical risks
earlier in the lifecycle, thereby helping to manage system complexity
(and avoiding surprises during the integration phase). Uncovering
quality attribute concerns, such as security, performance, or
availability with the underlying architectural late in the lifecycle--that
is, after several iterations have passed--often yields significant rework
and schedule delay. Delivering functionality is more predictable when
the infrastructure for the new features is in place, so it is important to
maintain a continual focus on the architecturally significant
requirements and estimation of when the development teams will
depend on having code that implements an architectural solution.

SOFTWARE TESTING: Approaches and Technologies 26 /92

@) F bR E —

SUN YAT-S5EN UNIVERSITY

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale

(3) Align feature-based development and system decomposition.
A common approach in Agile teams is to implement a feature (or user
story) in all the components of the system. This approach gives the
team the ability to focus on something that has stakeholder value. The
team controls every piece of implementation for that feature and
therefore they need not wait until someone else outside the team has
finished some required work. We call this approach "vertical
alignment" because every component of the system required for
realizing the feature is implemented only to the degree required by
the team.
System decomposition could also be horizontal, however, based on
the architectural needs of the system. This approach focuses on
common services and variability mechanisms that promote reuse.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 27192

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale

(3) Align feature-based development and system decomposition.
The goal of creating a feature-based development and system
decomposition approach is to provide flexibility in aligning teams
horizontally, vertically, or in combination, while minimizing coupling to
ensure progress. Although organizations create products in very
different domains (ranging from embedded systems to enterprise
systems) similar architecture patterns and strategies emerge when a
need to balance rapid progress and agile stability is desired. The
teams create a platform containing commonly used services and
development environments either as frameworks or platform plug-
ins to enable fast feature-based development.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 28/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(4) Use quality-attribute scenarios to clarify architecturally significant

requirements.
Scrum emphasizes customer-facing requirements--features that end
users dwell on--and indeed these are important to success. But when
the focus on end-user functionality becomes exclusive, the underlying
architecturally significant requirements can go unnoticed.
Superior practice is to elicit, document, communicate, and validate
underlying quality attribute scenarios during development of the
architectural runway. This approach becomes even more important at
scale when projects often have significant longevity and sustainability
needs. Early in the project, evaluate the quality attribute scenarios to
determine which architecturally significant requirements should be
addressed in early development increments (see architectural runway
practice above) or whether strategic shortcuts can be taken to deliver
end-user capability more quickly.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 29/92

BEA% EEEEE

B AEBEET A&

10 Recommended Practices for Achieving Agile at Scale
(4) Use quality-attribute scenarios to clarify architecturally significant

requirements.
For example, will the system really have to scale up to a million users
immediately, or is this actually a trial product? There are different
considerations depending on the domain.For example, IT systems use
existing frameworks, so understanding the quality attribute scenarios
can help developers understand which architecturally significant
requirements might already be addressed adequately within existing
frameworks (including open-source systems) or existing legacy
systems that can be leveraged during software development.
Similarly, such systems must address changing requirements in
security and deployment environments, which necessitates
architecturally significant requirements be given top priority when
dealing with scale.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 30/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(5) Use test-driven development for early and continuous focus on

verification.
This practice can be summarized as "write your test before you write
the system."” When there is an exclusive focus on "sunny-day"
scenarios (a typical developer's mindset), the project becomes overly
reliant on extensive testing at the end of the project to identify
overlooked scenarios and interactions. Therefore, be sure to focus on
rainy-day scenarios (e.g., consider different system failure modes), as
well as sunny-day scenarios. The practice of writing tests first,
especially at the business or system level (which is known
as acceptance test-driven development) reinforces the other practices
that identify the more challenging aspects and properties of the
system, especially quality attributes and architectural concerns (see
architectural runway and quality-attribute scenarios practices above).

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 31/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(6) Use end-to-end testing for early insight into emerging system
properties.

To successfully derive the full benefit from test-driven development at
scale, consider early and continuous end-to-end testing of system
scenarios. When teams test only the features for which they are
responsible, they lose insight into overall system behavior (and how
their efforts contribute to achieving it). Each small team could be
successful against its own backlog, but someone needs to look after
broader or emergent system properties and implications. For
example, who is responsible for the fault tolerance of the system as a
whole? Answering such questions requires careful orchestration of
development with verification activities early and throughout
development. When testing end-to-end, take into account different
operational contexts, environments, and system modes.

@) F o X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 32/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(6) Use end-to-end testing for early insight into emerging system

properties.
At scale, understanding end-to-end functionality requires its
elicitation and documentation. These goals can be achieved through
the application of agile requirements management techniques, such
as stories, as well as use of architecturally significant requirements. If
there is a need to orchestrate multiple systems, however, a more
deliberate elicitation of end-to-end functionality as mission/business
threads should provide a better result.

g;+¢x%_

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 33/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(7) Use continuous integration for consistent attention to integration
issues.

This basic Agile practice becomes even more important at scale, given
the increased number of subsystems that must work together and
whose development must be orchestrated. One implication is that the
underlying infrastructure developers will use day-to-day must be able
to support continuous integration. Another is that developers focus
on integration earlier, identifying the subsystems and existing
frameworks that will need to integrate. This identification has
implications for the architectural runway, quality-attribute scenarios,
and orchestration of development and verification activities
presented in our earlier blog posting. Useful measures for managing
continuous integration include rework rate and scrap rate. It is also
important to start early in the project to identify issues that can arise
during integration. What this means more broadly is that both
integration and the ability to integrate must be managed in the Agile
environment.

&) FT X E—

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 34 /92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(8) Consider recent field study management as an approach to

manage system development strategically.
The concept of technical debt arose naturally from the use of Agile
methods, where the emphasis on releasing features quickly often
creates a need for rework later. At scale, there may be multiple
opportunities for shortcuts, so understanding technical debt and its
implications becomes a means for strategically managing the
development of the system. For example, there might be cases where
certain architectural selections made to accelerate delivery have long-
term consequences. A recent field study the SEI conducted with
software developers also strongly supports that the leading sources of
technical debt are architectural choices. Such tradeoffs must be
understood and managed based on both qualitative and quantitative
measurements of the system.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 35/92

BEA% EEEEE

B AEBEET A&

10 Recommended Practices for Achieving Agile at Scale
(8) Consider recent field study management as an approach to

manage system development strategically.
Qualitatively, architecture evaluations can be used as part of the
product demos or retrospectives that Agile advocates. Quantitative
measures are harder but can arise from understanding productivity,
system uncertainty, and measures of rework (e.g., when uncertainty is
greater, it may make more sense to incur more rework later).

(&) T X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 36 /92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(9) Use prototyping to rapidly evaluate and resolve significant

technical risks.
To address significant technical issues, teams employing Agile
methods will sometimes perform what in Scrum is referred to as
a technical spike, in which a team branches out from the rest of the
project to investigate a specific technical issue, develop one or more
prototypes to evaluate possible solutions, and report what they
learned to the project team so that they can proceed with greater
likelihood of success. A technical spike may extend over
multiple sprints, depending on the seriousness of the issue and how
much time it takes to investigate the issue and report information that
the project can use.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 37192

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(9) Use prototyping to rapidly evaluate and resolve significant
technical risks.
At scale, technical risks having severe consequences are typically more
numerous. Prototyping (and other approaches to evaluating
candidate solutions such as simulation and demonstration) can
therefore be an essential early planning but also recurring. A goal of
Agile methods is increased early visibility. From that perspective,
prototyping is a valuable means of achieving visibility more quickly for
technical risks and their mitigations. The practice of making team
coordination top priority as mentioned earlier has a role here, too, to
help orchestrate reporting what was learned from prototyping to the
overall system.

@) F o X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 38/92

BEA% EESEE
B AR IEI &

10 Recommended Practices for Achieving Agile at Scale
(10) Use architectural evaluations to ensure that architecturally

significant requirements are being addressed.
While not considered part of mainstream Agile practice, architecture
evaluations have much in common with Agile methods in seeking to
bring a project's stakeholders together to increase their visibility into
and commitment to the project, as well as to identify overlooked
risks. At scale, architectural issues become even more important, and
architecture evaluations thus have a critical role on the project.
Architecture evaluation can be formal, as in the SEl's Architecture
Tradeoff Analysis Method, which can be performed, for example, early
in the Agile project lifecycle before the project's development teams
are launched, or recurrently. There is also an important role for lighter
weight evaluations in project retrospectives to evaluate progress
against architecturally significant requirements.

&) T b X ¥ —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 39/92

BEA% EEEEE

B BEEHLZFEDR
XP
XP (TR FR4WFZ) $RIEMIXE1T, BRNETREE D INERFEER
PEZEFRAK.
Scrum

Scrum 2—MIARAEEEIE, AT mA LS TIEEIE,
Crystal Methods
Crystal Methods (KEa A &RS) 5 XP —#F, #2UAAARFIL,
BEARXBENHEZENENSLE G A,
FDD
FOD ($FMIREH %) B—EF XN BB G &I B A LI
N, KAREEHIIREERFLITIE.

SOFTWARE TESTING: Approaches and Technologies 40 / 92

BEA% EESEE
B HEEFALFETR
ASD

ASD (BENHMHHA) NERBENRFEIERIRELR, BT
MR KEE . A EARLENEE,

DSDM
DSDM (BN RGF L T737E) BFLALFZ ik, REMAM
HEITREFF L.

RUP

RUP B— NI IRIER, ERUERFITEZAREERNEIE, B
LR E R RIIIE.

SOFTWARE TESTING: Approaches and Technologies 41/92

BEH% EEEEE

B Scrum

Scrum is an agile framework for managing knowledge work, with an
emphasis on software development. It is designed for teams of 3-to-9
members, who break their work into actions that can be completed
within time-boxed iterations, called sprints, no longer than one month
and most commonly two weeks, then track progress and re-plan in 15-
minute time-boxed stand-up meetings, called daily scrums.
History of Scrum
Scrum is a lightweight, iterative and incremental framework for
managing product development. It defines “a flexible, holistic (EZ{s
HY) product development strategy where a development team
works as a unit to reach a common goal"”, challenges assumptions
of the "traditional, sequential approach" (Hirotaka Takeuchi and
lkujiro Nonaka, 1986) to product development, and enables teams
to self-organize by encouraging physical co-location or close online
collaboration of all team members, as well as daily face-to-face
communication among all team members and disciplines involved.

&) FT X E—

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 42 /92

BEH% EEEEE

B Scrum

History of Scrum
Takeuchi and Nonaka described a new approach to
commercial product development that would increase speed and
flexibility, based on case studies from manufacturing firms in the
automotive, photocopier and printer industries. They called this
the holistic or rugby approach, as the whole process is performed
by one cross-functional team across multiple overlapping phases,
where the team "tries to go the distance as a unit, passing the ball
back and forth".
In rugby football, a scrum refers to the manner of restarting the
game after a minor infraction. In the early 1990s, Ken
Schwaber used what would become Scrum at his company,
Advanced Development Methods, and Jeff Sutherland, with John
Scumniotales and Jeff McKenna, developed a similar approach at
Easel Corporation, and were the first to refer to it using the single
word Scrum.

SOFTWARE TESTING: Approaches and Technologies 43 /92

BEH% EEEEE

B Scrum

History of Scrum
In 1995, Sutherland and Schwaber jointly presented a paper
describing the Scrum methodology at the Business Object Design
and Implementation Workshop held as part of Object-Oriented
Programming, Systems, Languages & Applications '95 (OOPSLA '95)
in Austin, Texas, its first public presentation. Schwaber and
Sutherland collaborated during the following years to merge the
above writings, their experiences, and industry best practices into
what is now known as Scrum.
In 2001, Schwaber worked with Mike Beedle to describe the
method in the book Agile Software Development with Scrum.
Its approach to planning and managing projects is to bring decision-
making authority to the level of operation properties and
certainties.

SOFTWARE TESTING: Approaches and Technologies 44 /92

BEH% EEEEE

B Scrum

History of Scrum
Although the word is not an acronym, some companies
implementing the process have been known to spell it with capital
letters as SCRUM. This may be due to one of Ken Schwaber's early
papers, which capitalized SCRUM in the title.
While the trademark on the term Scrum itself has been allowed to
lapse, so that it is deemed as owned by the wider community
rather than an individual, the leading capital is retained—except
when used with other words (as in daily scrum or scrum team).
Hybridization of scrum is common as scrum does not cover the
whole product development lifecycle; therefore, organizations find
the need to add in additional processes to create a more
comprehensive implementation. For example, at the start of the
project, organizations commonly add process guidance on
requirements gathering and prioritization, initial high-level design,
and budget and schedule forecasting.

SOFTWARE TESTING: Approaches and Technologies 45/ 92

BEA% EEEEE

B Scrum

Key ideas
A key principle of Scrum is the dual recognition that customers will
change their minds about what they want or need (often called
requirements volatility) and that there will be unpredictable
challenges—for which a predictive or planned approach is not
suited. As such, Scrum adopts an evidence-based empirical (5% E
M HY) approach—accepting that the problem cannot be fully
understood or defined up front, and instead focusing on how to
maximize the team's ability to deliver quickly, to respond to
emerging requirements, and to adapt to evolving technologies and
changes in market conditions.

SOFTWARE TESTING: Approaches and Technologies 46 / 92

BEA% EEEEE

B Scrum

Roles
There are three core roles (product owner, development team and
scrum master) and a range of ancillary roles. Core roles are often
referred to as pigs and ancillary roles as chickens (after the
story The Chicken and the Pig). The core roles are those committed
to the project in the Scrum process -- they are the ones producing
the product (objective of the project). They represent the scrum
team.

(&) T b X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 47192

BEA% EEEEE

B Scrum

Roles
The Product Owner represents the stakeholders and is the voice of
the customer. He or she is accountable for ensuring that the team
delivers value to the business. The Product Owner writes (or has
the team write) customer-centric items (typically user stories),
ranks and prioritizes them, and adds them to the product backlog.
Scrum teams should have one Product Owner, and while they may
also be a member of the development team, this role should not be
combined with that of the Scrum Master. In an enterprise
environment, though, the Product Owner is often combined with
the role of Project Manager as they have the best visibility
regarding the scope of work (products)

SOFTWARE TESTING: Approaches and Technologies 48 / 92

BEA% EEEEE

B Scrum

Roles
The Development Team is responsible for delivering potentially
shippable product increments at the end of each Sprint (the Sprint
Goal). A Team is made up of 7 +/- 2 individuals with cross-
functional skills who do the actual work (analysis, design, develop,
test, technical communication, document, etc.). The Development
Team in Scrum is self-organizing, even though there may be some
level of interface with project management offices (PMOs).

SOFTWARE TESTING: Approaches and Technologies 49 /92

BEA% EEEEE

B Scrum

Roles
Scrum is facilitated by a scrum master, who is accountable for
removing impediments to the ability of the team to deliver the
sprint goal/deliverables. The scrum master is not the team leader,
but acts as a buffer between the team and any distracting
influences. The scrum master ensures that the Scrum process is
used as intended. The scrum master is the enforcer of the rules of
Scrum, often chairs key meetings, and challenges the team to
improve. The role has also been referred to as a servant-leader to
reinforce these dual perspectives. The scrum master differs from a
Project Manager in that the latter may have people
management responsibilities unrelated to the role of scrum master.
The scrum master role excludes any such additional people
responsibilities.

@) F o X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 50 /92

BEH% EEEEE

B Scrum

Workflows in the Scrum framework
(1) A Sprint (or iteration) is the basic unit of development in Scrum.
The sprint is a time-boxed effort; that is, it is restricted to a specific
duration. The duration is fixed in advance for each sprint and is
normally between one week and one month, with two weeks being
the most common.
Each sprint starts with a sprint planning event that aims to
define a sprint backlog, identify the work for the sprint, and
make an estimated forecast for the sprint goal. Each sprint
ends with a sprint review and sprint retrospective, that reviews
progress to show to stakeholders and identify lessons and
improvements for the next sprints.
Scrum emphasizes working product at the end of the sprint
that is really done. In the case of software, this likely includes
that the software has been fully integrated, tested and
documented, and is potentially releasable.

SOFTWARE TESTING: Approaches and Technologies 51/92

BEA% EEEEE

B Scrum

Workflows in the Scrum framework
(2) At the beginning of a sprint, the scrum team holds a Sprint
Planning event to:
Mutually discuss and agree on the scope of work that is
intended to be done during that sprint
Select product backlog items that can be completed in one
sprint
Prepare a sprint backlog that includes the work needed to
complete the selected product backlog items
Once the development team has prepared their sprint backlog,
they forecast (usually by voting) which tasks will be delivered
within the sprint.

SOFTWARE TESTING: Approaches and Technologies 52 /92

BEH% EEEEE

B Scrum

Workflows in the Scrum framework
(2) At the beginning of a sprint, the scrum team holds a Sprint
Planning event to:
The recommended duration is four hours for a two-week sprint
(pro rata for other sprint durations)
= During the first half, the whole scrum team (development
team, scrum master, and product owner) selects the
product backlog items they believe could be completed in
that sprint.
= During the second half, the development team identifies
the detailed work (tasks) required to complete those
product backlog items; resulting in a confirmed sprint
backlog.
= As the detailed work is elaborated, some product backlog
items may be split or put back into the product backlog if
the team no longer believes they can complete the
required work in a single sprint.

SOFTWARE TESTING: Approaches and Technologies 53 /92

BEA% EEEEE

B Scrum

Workflows in the Scrum framework
(3) Each day during a sprint, the team holds a Daily Scrum (or stand-
up) with specific guidelines:
All members of the development team come prepared. The
daily scrum:
= starts precisely on time even if some development team
members are missing
= should happen at the same time and place every day
= is limited (time-boxed) to fifteen minutes
Anyone is welcome, though only development team members
should contribute.

SOFTWARE TESTING: Approaches and Technologies 54 /92

BEH% EEEEE

B Scrum

Workflows in the Scrum framework
(3) Each day during a sprint, the team holds a Daily Scrum (or stand-
up) with specific guidelines:
During the daily scrum, each team member typically answers
three questions:
= What did | complete yesterday that contributed to the
team meeting our sprint goal?
= What do | plan to complete today to contribute to the
team meeting our sprint goal?
= Do | see any impediment that could prevent me or the
team from meeting our sprint goal?
Any impediment identified in the daily scrum should be
captured by the scrum master and displayed on the team's
scrum board or on a shared risk board, with an agreed person
designated to working toward a resolution (outside of the daily
scrum). No detailed discussions should happen during the daily
scrum.

SOFTWARE TESTING: Approaches and Technologies 55/92

BEA% EEEEE

B Scrum

Workflows in the Scrum framework
(4) At the end of a sprint, the team holds two events: the Sprint
Review and the Sprint Retrospective.
At the sprint review, the team:
= reviews the work that was completed and the planned
work that was not completed
= presents the completed work to the stakeholders (a.k.a.
the demo)
= collaborates with the stakeholders on what to work on
next
Guidelines for sprint reviews:
= Incomplete work cannot be demonstrated.
= The recommended duration is two hours for a two-week
sprint (proportional for other sprint-durations)

SOFTWARE TESTING: Approaches and Technologies 56 /92

BEA% EEEEE

B Scrum

Workflows in the Scrum framework
(4) At the end of a sprint, the team holds two events: the Sprint
Review and the Sprint Retrospective.
At the sprint retrospective, the team:
= Reflects on the past sprint
= ldentifies and agrees on continuous process improvement
actions
Guidelines for sprint retrospectives:
= Three main questions are asked in the sprint retrospective:
What went well during the sprint? What did not go well?
What could be improved for better productivity in the next
sprint?
= The recommended duration is one-and-a-half hours for a
two-week sprint (proportional for other sprint duration(s))
= This event is facilitated by the scrum master

SOFTWARE TESTING: Approaches and Technologies 57 192

BEH% EEEEE

B Scrum

Artifacts in the Scrum framework
Product Backlog

The product backlog is a model of work to be done and
contains an ordered list of product requirements that a scrum
team maintains for a product. The format of product backlog
items varies, common formats include user stories, use cases,
or any other requirements format the team finds useful. These
will define features, bug fixes, non-functional requirements,
etc.—whatever must be done to successfully deliver a viable
product. The product owner prioritizes product backlog items
(PBIs) based on considerations such as risk, business value,
dependencies, size, and date needed.
The product backlog is what will be delivered, ordered into the
sequence in which it should be delivered. It is visible to
everyone but may only be changed with the consent of the
product owner, who is ultimately responsible for ordering

product backlog items for the development tea o%:hfoie%

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 58 /92

BEH% EEEEE

B Scrum

Artifacts in the Scrum framework
Sprint Backlog

The sprint backlog is the list of work the development team
must address during the next sprint. The list is derived by the
scrum team progressively selecting product backlog items in
priority order from the top of the product backlog until they
feel they have enough work to fill the sprint. The development
team should keep in mind its past performance assessing its
capacity for the new-sprint, and use this as a guideline of how
much 'effort' they can complete.
The product backlog items may be broken down into tasks by
the development team. Tasks on the sprint backlog are never
assigned (or pushed) to team members by someone else;
rather team members sign up for (or pull) tasks as needed
according to the backlog priority and their own skills and
capacity. This promotes self-organization of the development
team and developer buy-in.

SOFTWARE TESTING: Approaches and Technologies 59 /92

BEA% EEEEE

B Scrum

Artifacts in the Scrum framework
Product Increment

The potentially releasable increment is the sum of all the
product backlog items completed during a sprint, integrated
with the work of all previous sprints. At the end of a sprint, the
increment must be complete, according to the scrum team's
definition of "done", fully functioning, and in a usable
condition regardless of whether the product owner decides to
actually release it.

gg?¢x%_

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 60 /92

g

%

e

B Scrum

W Artifacts in the Scrum framework
Some Extensions

Sprint burn-down chart
Release burn-up chart
Definition of done (DoD)
Velocity

Spike

Research

Tracer bullet

SOFTWARE TESTING: Approaches and Technologies

61 /92

BEA% EEEEE

B Scrum

The following terminology is used in Scrum

Scrum Team
Product Owner, Scrum Master and Development Team.

Product Owner
The person responsible for maintaining the Product Backlog by
representing the interests of the stakeholders, and ensuring
the value of the work the Development Team does.

Scrum Master
The person responsible for the Scrum process, making sure it is
used correctly and maximizing its benefits.

Development Team
A cross-functional group of people responsible for delivering
potentially shippable increments of Product at the end of every
Sprint.

Sprint Burn Down Chart
Daily progress for a Sprint over the sprint's length.

SOFTWARE TESTING: Approaches and Technologies 62 /92

BEA% EEEEE

B Scrum

The following terminology is used in Scrum

Release Burn Down Chart
Sprint level progress of completed stories in the Product
Backlog.

Product Backlog
A prioritized list of high-level requirements.

Sprint Backlog
A prioritized list of tasks to be completed during the sprint.

Sprint
A time period (typically 1-4 weeks) in which development
occurs on a set of backlog items that the team has committed
to. Also commonly referred to as a Time-box or iteration.

SOFTWARE TESTING: Approaches and Technologies 63 /92

BEH% EEEEE

B Scrum

The following terminology is used in Scrum

(User) Story
A feature that is added to the backlog is commonly referred to
as a story and has a specific suggested structure. The structure
of a story is: "As a <user type> | want to <do some action> so
that <desired result>" This is done so that the development
team can identify the user, action and required result in a
request and is a simple way of writing requests that anyone
can understand. Example: As a wiki user | want a tools menu
on the edit screen so that | can easily apply font formatting. A
story is an independent, negotiable, valuable, estimable, small,
testable requirement ("INVEST"). Despite being independent,
i.e., they have no direct dependencies with other
requirements, stories may be clustered into epics when
represented on a product roadmap or further down in the
backlog.

SOFTWARE TESTING: Approaches and Technologies 64 /92

BEA% EEEEE

B Scrum

The following terminology is used in Scrum

Theme
A theme is a top-level objective that may span projects and
products. Themes may be broken down into sub-themes,
which are more likely to be product-specific. Themes can be
used at both program and project level to drive strategic
alignment and communicate a clear direction.

Epic (5E1F)
An epic is a group of related stories, mainly used in product
roadmaps and the backlog for features that have not yet been
analyzed enough to break down into component stories, which
should be done before bringing it into a sprint so to reduce
uncertainty. Epics can also be used at both program and
project level.

SOFTWARE TESTING: Approaches and Technologies 65 /92

BEH% EEEEE

B Scrum

The following terminology is used in Scrum
Spike

A time boxed period used to research a concept and/or create
a simple prototype. Spikes can either be planned to take place
in between sprints or, for larger teams, a spike might be
accepted as one of many sprint delivery objectives. Spikes are
often introduced before the delivery of large epics or user
stories in order to secure budget, expand knowledge, and/or
produce a proof of concept. The duration and objective(s) of a
spike will be agreed between the Product Owner and Delivery
Team before the start. Unlike sprint commitments, spikes may
or may not deliver tangible, shippable, valuable functionality.
For example, the objective of a spike might be to successfully
reach a decision on a course of action. The spike is over when
the time is up, not necessarily when the objective has been
delivered.

SOFTWARE TESTING: Approaches and Technologies 66 /92

BEH% EEEEE

B Scrum

The following terminology is used in Scrum

Tracer Bullet
The tracer bullet is a spike with the current architecture,
current technology set, current set of best practices which
results in production quality code. It might just be a very
narrow implementation of the functionality but is not throw
away code. It is of production quality and the rest of the
iterations can build on this code. The name has military origins
as ammunition that makes the path of the weapon visible,
allowing for corrections. Often these implementations are a
'‘quick shot' through all layers of an application, such as
connecting a single form's input field to the back-end, to prove
the layers will connect as expected.

Impediment
Anything that prevents a team member from performing work
as efficiently as possible.

SOFTWARE TESTING: Approaches and Technologies 67 /92

BEA% EEEEE

B Scrum

The following terminology is used in Scrum

Point Scale/Effort/Story Points (M8 R &)
Relates to an abstract point system, used to discuss the
difficulty of the story, without assigning actual hours. The most
common scale used is a rounded Fibonacci sequence
(1,2,3,5,8,13,20,40,100), although some teams use linear scale
(1,2,3,4...), powers of two (1,2,4,8...), and clothes size (XS, S, M,
L, XL).

Task
Added to the story at the beginning of a sprint and broken
down into hours. Each task should not exceed 12 hours, but it's
common for teams to insist that a task take no more than a day
to finish.

Definition of Done (DoD)
The exit-criteria to determine whether a product backlog item
is complete. In many cases the DoD requires that all regression
tests should be successful.

SOFTWARE TESTING: Approaches and Technologies 68 /92

BEA% EEEEE

B Scrum
The following terminology is used in Scrum

Velocity
The total effort a team is capable of in a sprint. The number is

derived by evaluating the story points completed from the last
few sprint's stories/features. This is a guideline for the team
and assists them in understanding how many stories they can
do in a future sprint.

Sashimi
A report that something is "done". The definition of "done"

may vary from one Scrum team to another, but must be
consistent within one team.

Planning Poker
In the Sprint Planning Meeting, the team sits down to estimate

its effort for the stories in the backlog. The Product Owner
needs these estimates, so that he or she is empowered to
effectively prioritize items in the backlog and, as a result,

forecast releases based on the team's velocity. _

SOFTWARE TESTING: Approaches and Technologies 69 /92

BEA% EEEEE

B Scrum

The following terminology is used in Scrum

Abnormal Termination
The Product Owner can cancel a Sprint if necessary. The
Product Owner may do so with input from the team, Scrum
Master or management. For instance, management may wish
to cancel a sprint if external circumstances negate the value of
the sprint goal. If a sprint is abnormally terminated, the next
step is to conduct a new Sprint planning meeting, where the
reason for the termination is reviewed.

ScrumBut
A ScrumBut (or Scrum But) is an exception to the "pure" Scrum
methodology, where a team has changed the methodology to
adapt it to their own needs.

@) F o X% —

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 70 /92

BEA%

e

B eXtreme Programming

um RPRZmIE (eXtreme Programming, XP) = HIEIRE A —FhSL I T 32,

B Kent Beck 1£1996 2 .
n HRRmIZES:
/\[Z]BA (2-10 programmers)
= XU B
RIRT LA TR ERIEK
o 1) AT 14

7218 Communication
&1L Simplicity

% i% Feedback

#UAl Courage

*1#k i Modesty

Ly // /

"/’//ﬂ’
Kent Beck, 1996
Bx (& B AU AT REFL 2 B B AV

SOFTWARE TESTING: Approaches and Technologies

71/92

BEA% EEEEE

B eXtreme Programming
W PR mIZ T AR 13 F2 0 SE B,
Z1BA11E (Whole Team)
X SEEE (The Planning Game)
2E % 4mFE (Pair programming)
R BR B FF % (Testing-Driven Development)
E 14 (Refactoring)
{8 B2 1% 3T (Simple Design)
KIS E&E{RERFA (Collective Code Ownership)
¢ EE AY, (Continuous Integration)
& P (Customer Tests)
INIRRE & #0 (Small Release)
& E40/\BF T1EHI (40-hour Week)
RASAITE (Code Standards)
A G2y (System Metaphor)

SOFTWARE TESTING: Approaches and Technologies 7292

BEH% EEEEE

B eXtreme Programming
PR AmIZAV 12 S0 B,

NS
IMNEEEZTAFTEEERUREEFRINA LXHE,
ERALST R RRE R IR DMRAEFZLEEERNRX,
INRIPRRGIS K/, SRR ENBEER,

X SRR
BERUMENEXREEZEPEKR. RIRRWENHKGE—
BERFEXRWE, BERPERTEHRALALERE, MiLEF
W5, ARANGHITOH, WEMERA, HITHEARKIHR.
FXIREE AT LUHITZIR, BRERTEEREITER. BF
MERHAARESEFPABNER, WRRAZITHIKRE,
TR BB AR BT B NREERY .

SOFTWARE TESTING: Approaches and Technologies 73192

g

F& EEERE

B eXtreme

Programming

W PR 4mFZRV 129 SEiEx
gz~

WIRmMIFBAREFESS5HALTE, BEREKREEFRNR
WEW, FTUAEKREREFLIS—EIE, HARKIE
IR MR 15

U]

M2 it HE 5 A R E w5 — L RS (1Tl ARIE)
BE—H, AANSEENREFLZAGIHRE, MG
FEMRIBRERPAIER, FEitFnZELRAIF ERRR
My, RS

SOFTWARE TESTING: Approaches and Technologies 74192

BEA% EEEEE

B eXtreme Programming
PR ZmIZRY 12 SKE%
BER:
WIRmIZARINIRER R PRV KT, BRAERZET LY,
AR T BRI ER A LI ZEEYT RENH %, MK
BRI, SKIMEAIEKEA . ERIEITTHAS A EH
EREETHE, EALXEZR "B’ BREB%, =M
THHNWERE, BamKALERER.

SOFTWARE TESTING: Approaches and Technologies 75192

BEA% EEEEE

B eXtreme Programming
WPRWIZAV12 KB,
EX 7

EHEWREIZFRNMINERLILIATER, AT EERRYG
AIASEIE TN, X T—LL3RH2 T & BRER ST B =T,
iEIEIRE, FANMRANEN. ARBXRRENR I
®” , MUELAEEERKEHINESBEERBHAL.
EMEERT “UEE N—1ME, 2EEAZEIN
ERFERVRIEE T, EEFMACEAISBRINM. X BRI R
MR R UENIR BB .

SOFTWARE TESTING: Approaches and Technologies 76 /92

BEH% EEEEE

B eXtreme Programming
PR AmIZAV 12 S0 B,
MIXIRFF %
WERARIZR LUK FIGHY, AT ATLURRE P HKBISEI,
MRFEFME R, MXENRAIANAELL., BF
SEPREANBREFEERE, MAERPEKRKNERRI,
EEPMRGEENIER. MR %4, LHREE P
FKIRENER T 4
FRER A
ERIER SRR, BT RAMRNIENF 4 .
INRAREY AT, PTIANEREE AL (BB 25 & FP/aiday
iz, LERILIFFRRHERIGELNSER. FEEMREER
R B & AR S EVFRAE

My
It3 4 —
i, £
= SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 77192

BEA% EEEEE

B eXtreme Programming
PR ZmIZAY 12 SC B,
LEXT Rz
XEWREIEEEFUNXEK. BT EFREeH—8
TEWHRE, — MRS, —MRZE, EMEARITRAT
R RENRE. BTANARELETH, R’ETL
FRITERF. IMRELAIEFMARHLZEERK
G EB B IEEIFRIBR
KELE
EWRFRIZE S BTRXIEEE, KEEAHAXEBES,
XEFFTHEARWRSNEIE, BEAMBHIATRTEMN
BRI,

SOFTWARE TESTING: Approaches and Technologies 78192

BEA% EEEEE

B eXtreme Programming
PR ZmIZRY 12 SKE%
RS RLSE
B EALZANEB N ABNTIIE, OB IFMAITHE, K
BRI REE, FTUAES—FREM S RE2VNER.
FE40/NBTTE
WIRMIBAARBIZR MR TIE, ~YERS M, /DMRA
Rttt 2 A T BARTE AT LASE AR TIE = HE-

SOFTWARE TESTING: Approaches and Technologies 79 /92

BEA%

e

B eXtreme Programming

" FEE
Planning

v« 22 User stories are wntten.

v2« 4 Release planning creates the schedule.
v2« 2 Make frequent small releases.

»- 2 The Project Velocity 1s measured.

+2+ 4 The project 1s dided mto iterations.
v2« 23 Iteration planning starts each teration.
v« 4 Move people around.

« 4 A stand-up meeting starts each day.

« 2 Fix XP when it breaks.

LA N T N

Designing

« 4 Sumphicity.

« 2 Choose a system metaphor.

« 2 Use CRC cards for design sessions.
« 2 Create spike solutions to reduce nisk.
v.+ 4 No functionality 1s added early.

v_+ 2 Pefactor whenever and wherever possible.

aF &F TF 4p

Coding

v« 2 The customer 1s always available.

v+ 4 Code must be wnitten to agreed standards.
»2+ 2 Code the umt test first

v_+ 2 All code 1s pair programmed.

+2+ 2 Only one pair mtegrates code at a tune.

v+ 2 Inteorate often.

»+ 2 Use collective code ownership.

« 4 Leave optunization till last.

« 4 No overtime.

L O I

Testing

« .2 All code must have unit tests.
« 2 All code must pass all unit tests before it
can be released.
»-+ 2 When a bug is found tests are created.
o+ 2 Acceptance tests are run often and the score
15 published.

(&) T K& —

SOFTWARE TESTING: Approaches and Technologies

80 /92

SUN YAT-SEN UNIVERSITY

BEA% EEEEE

B eXtreme Programming
% BIEA

Test Scenarios

User Stories Mew Lizer Story
wfmemg FProject Velocihy Bugs

. Systerm ate_st Custarmer
Arch_lt..:cturalmetaphm . REIE‘;E!S'E Plan Itﬂl‘ﬂtiﬂﬂ YWersion Aﬂﬂﬂptﬂﬂcﬂ Appraval SII]EIH
Spike Planning @ & Tests Releases
Lincettain Confident Mext [teration
Estimates Estimates
Spikﬂ Capynight 200600 1. Donvan Wells

@ TLRE -

SUN YAT-S5EN UNIVERSITY

SOFTWARE TESTING: Approaches and Technologies 81/92

A A HAE R EEEER
M ISO/IEC 12207 44 A A 1=

ISO/IEC/IEEE 12207

ISO/IEC/IEEE 12207 Systems and software engineering — Software
life cycle processes is an international standard for software
lifecycle processes. First introduced in 1995, it aims to be a primary
standard that defines all the processes required for developing and
maintaining software systems, including the outcomes and/or
activities of each process.
ISO/IEC/IEEE 12207:2017.
The IEEE Computer Society joined directly with the ISO in the
editing process for 2017’s version. A significant change is that it
adopts a process model identical to the ISO/IEC/IEEE
15288:2015 process model with one name change that the
15288 "System Requirements Definition" process is renamed
to the "System/Software Requirements Definition" process.

SOFTWARE TESTING: Approaches and Technologies 82/92

A A HAE R EEEER
M ISO/IEC 12207 44 A A 1=

ISO/IEC/IEEE 12207:2017

This harmonization of the two standards led to the removal of
separate software development and software reuse processes,
bringing the total number of 12207 processes from 43 down to the
30 processes defined in 15288. It also caused changes to the quality
management and quality assurance process activities and
outcomes. Additionally, the definition of "audit" and related audit
activities were updated. Annex | of ISO/IEC/IEEE 12207:2017
provides a process mapping between the 2017 version and the
previous version, including the primary process alignments
between the two versions; this is intended to enable traceability
and ease transition for users of the previous version.

SOFTWARE TESTING: Approaches and Technologies 83/92

A A HAE R EEEER
M ISO/IEC 12207 44 A A 1=

Software Life Cycle Processes

The ISO/IEC 12207 establishes a set of processes for managing the
lifecycle of software. The standard “does not prescribe (FLZE) a
specific software life cycle model, development methodology,
method, modelling approach, or technique.". Instead, the standard
(as well as ISO/IEC/IEEE 15288) distinguishes between a "stage"
and "process" as follows:
stage: "period within the life cycle of an entity that relates to
the state of its description or realization". A stage is typically a
period of time and ends with a "primary decision gate".
process: "set of interrelated or interacting activities that
transforms inputs into outputs”. The same process often recurs
within different stages.

SOFTWARE TESTING: Approaches and Technologies 84 /92

A A HAE R EEEER
M ISO/IEC 12207 44 A A 1=

Software Life Cycle Processes

Stages (aka phases) are not the same as processes, and this
standard only defines specific processes - it does not define any
particular stages. Instead, the standard acknowledges that software
life cycles vary, and may be divided into stages that represent major
life cycle periods and give rise to primary decision gates. No
particular set of stages is normative, but it does mention two
examples:

The system life cycle stages from ISO/IEC TS 24748-1 could be

used (concept, development, production, utilization, support,

and retirement).

It also notes that a common set of stages for software is

concept exploration, development, sustainment (32 ¥), and
retirement.

SOFTWARE TESTING: Approaches and Technologies 85/92

N e AL PR

EEENE

B ISO/IEC 12207 {54 fp B R 12

Software Life Cycle Processes

ISO/IEC/IEEE 12207:2017 divides software life cycle processes into

four main process groups
Agreement processes

Organizational project-enabling processes
Technical management processes

Technical processes.

Under each of those four process groups are a variety of sub-
categories, including the primary activities of acquisition and
supply (agreement); configuration (technical management); and
operation, maintenance, and disposal &t & (technical).

The life cycle processes the standard defines are not aligned to any
specific stage in a software life cycle. Indeed, the life cycle
processes that involve planning, performance, and evaluation
"should be considered for use at every stage". In practice,

processes occur whenever they are needed within any

SOFTWARE TESTING: Approaches and Technologies

86 /92

stage.

I’n; ? %

It3 4 —
@) T X

gl SUN YAT-SEN UNIVERSITY

A A HAE R EEEER
M ISO/IEC 12207 44 A A 1=

Software Life Cycle Processes
Agreement processes

Here ISO/IEC/IEEE 12207:2017 includes the acquisition and
supply processes, which are activities related to establishing an
agreement between a supplier and acquirer. Acquisition covers
all the activities involved in initiating a project. The acquisition
phase can be divided into different activities and deliverables
that are completed chronologically (3&Jli1/5). During the supply
phase a project management plan is developed. This plan
contains information about the project such as different
milestones that need to be reached.

SOFTWARE TESTING: Approaches and Technologies 87 /92

N

E iy I HAE E EEEEN

W ISO/IEC 12207 X4 ap A HAT 12
Software Life Cycle Processes
Organizational project-enabling processes

Detailed here are life cycle model management, infrastructure
management, portfolio management, human resource
management, quality management, and knowledge
management processes. These processes help a business or
organization enable, control, and support the system life cycle
and related projects. Life cycle mode management helps
ensure acquisition and supply efforts are supported, while
infrastructure and portfolio management supports business
and project-specific initiatives during the entire system life
cycle. The rest ensure the necessary resources and quality
controls are in place to support the business’ project and
system endeavors (3 /7).

&) T b X ¥ —

SOFTWARE TESTING: Approaches and Technologies 88 /92

SUN YAT-S5EN UNIVERSITY

R dp R RS TR EEEER
M ISO/IEC 12207 44 A A 1=

Software Life Cycle Processes
Technical management processes
ISO/IEC/IEEE 12207:2017 places eight different processes here:
= Project planning
= Project assessment and control
= Decision management
= Risk management
= Configuration management
= Information management
= Measurement
= Quality assurance
These processes deal with planning, assessment, and control of
software and other projects during the life cycle, ensuring
qguality along the way.

SOFTWARE TESTING: Approaches and Technologies 89 /92

N e AL PR EESEN

W ISO/IEC 12207 X4 ap A HAT 12
Software Life Cycle Processes
Technical processes

The technical processes of ISO/IEC/IEEE 12207:2017
encompass (8 &) 14 different processes, some of which came
from the old software-specific processes that were phased out
from the 2008 version.
The full list includes:

= Business or mission analysis = Implementation

=+ Stakeholder needs and = Integration
requirements definition = Verification

= Systems/Software requirements © Transition
definition = Validation

= Architecture definition = Operation

= Design definition = Maintenance

= System analysis = Disposal

SOFTWARE TESTING: Approaches and Technologies 90 /92

N

E iy I HAE E EEEEN

W ISO/IEC 12207 X4 ap A HAT 12
Software Life Cycle Processes
Technical processes

These processes involve technical activities and personnel
(information technology, troubleshooters, software specialists,
etc.) during pre-, post- and during operation. The analysis and
definition processes early on set the stage for how software
and projects are implemented. Additional processes of
integration, verification, transition, and validation help ensure
qguality and readiness. The operation and maintenance phases
occur simultaneously, with the operation phase consisting of
activities like assisting users in working with the implemented
software product, and the maintenance phase consisting of
maintenance tasks to keep the product up and running. The
disposal process describes how the system/project will be
retired and cleaned up, if necessary.

SOFTWARE TESTING: Approaches and Technologies 91/92

Thank you!

SOFTWARE TESTING: Approaches and Technologies 92/92

