
Support Vector 
Machines 



Binary Classification 



A Separating Hyperplane 



Maximum Margin Hyperplane 

Geometric Intuition: Choose the perpendicular bisector of the shortest line segment joining 
the convex hulls of the two classes 
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SVM Notation 
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Margin = 2 / wtw 



Hard Margin SVM Primal 

• Maximize  2/|w|  
   such that  wtxi + b  +1 if yi = +1 
   wtxi + b  -1 if yi = -1 

 

• Difficult to optimize directly 
 
• Convex Quadratic Program (QP) reformulation 
• Minimize   ½ wtw     
   such that   yi(w

txi + b)  1 
 
• Convex QPs can be easy to optimize 



Linearly Inseparable Data 

• Minimize   ½ wtw + C #(Misclassified points)   
   such that   yi(w

txi + b)  1 (for “good” points) 
 
• The optimization problem is NP Hard in general 
• Disastrous errors are penalized the same as near 
misses 
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Inseparable Data – Hinge Loss 
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The C-SVM Primal Formulation 

• Minimize  ½ wtw + C i i  
   such that  yi(w

txi + b)  1 – i  
   i  0 
 
• The optimization is a convex QP 
• The globally optimal solution will be obtained 
• Number of variables = D + N + 1 
• Number of constraints = 2N  
• Solvers can train on 800K points in 47K (sparse) 
dimensions in less than 2 minutes on a standard PC 
 
Fan et al., “LIBLINEAR” JMLR 08 
Bordes et al., “LaRank” ICML 07 

 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://leon.bottou.org/papers/bordes-2007


The C-SVM Dual Formulation 

• Maximize  1t – ½tYKY  
   such that  1tY = 0  
   0    C 
 
• K is a kernel matrix such that Kij = K(xi, xj) = xi

txj 

•  are the dual variables (Lagrange multipliers) 
• Knowing  gives us w and b   
• The dual is also a convex QP 

• Number of variables = N 
• Number of constraints = 2N + 1 

 
Fan et al., “LIBSVM” JMLR 05  
Joachims, “SVMLight”  
 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/


Duality 

• Primal P = Minx  f0(x)  
     s. t.  fi(x)  0 1  i  N  
    hi(x) = 0 1  i  M 
 
• Lagrangian L(x,,) = f0(x) + i ifi(x) + i ihi(x) 
 
• Dual D = Max,  Minx L(x,,) 
      s. t.   0 
 
 
 



Duality 

• The Lagrange dual is always concave (even if the 
primal is not convex) and might be an easier 
problem to optimize 
 
• Weak duality : P  D  

• Always holds 
 
• Strong duality : P = D  

• Does not always hold 
• Usually holds for convex problems  
• Holds for the SVM QP 

 
 





Karush-Kuhn-Tucker (KKT) Conditions 

• If strong duality holds, then for x*, * and * to be 
optimal the following KKT conditions must 
necessarily hold 
 
• Primal feasibility :   fi(x*)  0 & hi(x*) = 0 for 1  i  
• Dual feasibility : *  0 
• Stationarity :  x L(x*, *,*) = 0 
• Complimentary slackness : i*fi(x*) = 0  
 
• If x+, + and + satisfy the KKT conditions for a 
convex problem then they are optimal 









SVM – Duality 

• Primal P = Minw,,b  ½ wtw + Ct  
     s. t.  Y(Xtw + b1)  1 –   
      0 
 
• Lagrangian L(,, w,,b)  = ½ wtw + Ct  – t 
        –t[Y(Xtw + b1) – 1 + ] 
 
• Dual D = Max  1t – ½tYKY  
     s. t.  1tY = 0  
    0    C 
 
 
 



SVM – KKT Conditions 

• Lagrangian L(,, w,,b)  = ½ wtw + Ct  – t 
        –t[Y(Xtw + b1) – 1 + ] 
 
• Stationarity conditions 

• w L= 0  w* = XY* (Representer Theorem) 
•  L= 0  C = * + * 
• b L= 0  *tY1 = 0 

 
• Complimentary Slackness conditions 

• i* [ yi (xi
tw* + b*) – 1 + i*] = 0 

• i*i* = 0 
 
 


































