Halo

A magic place for coding

0%

Problem

Given a 2D matrix matrix, handle multiple queries of the following type:

  1. Calculate the sum of the elements of matrix inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Implement the NumMatrix class:

  • NumMatrix(int[][] matrix) Initializes the object with the integer matrix matrix.
  • int sumRegion(int row1, int col1, int row2, int col2) Returns the sum of the elements of matrix inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Read more »

Problem

There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints.

In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards.

Your score is the sum of the points of the cards you have taken.

Given the integer array cardPoints and the integer k, return the maximum score you can obtain.

Read more »

Problem

Given an array of integers target. From a starting array, A consisting of all 1’s, you may perform the following procedure :

  • let x be the sum of all elements currently in your array.
  • choose index i, such that 0 <= i < target.size and set the value of A at index i to x.
  • You may repeat this procedure as many times as needed.

Return True if it is possible to construct the target array from A otherwise return False.

Read more »

Problem

Let’s say a positive integer is a super-palindrome if it is a palindrome, and it is also the square of a palindrome.

Given two positive integers left and right represented as strings, return the number of super-palindromes integers in the inclusive range [left, right].

Read more »

Problem

Given an array of non-negative integers nums, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

You can assume that you can always reach the last index.

Read more »