Halo

A magic place for coding

0%

Problem

Given a singly linked list, group all odd nodes together followed by the even nodes. Please note here we are talking about the node number and not the value in the nodes.

You should try to do it in place. The program should run in O(1) space complexity and O(nodes) time complexity.

Read more »

Problem

We are given a linked list with head as the first node. Let’s number the nodes in the list: node_1, node_2, node_3, ... etc.

Each node may have a next larger value: for node_i, next_larger(node_i) is the node_j.val such that j > i, node_j.val > node_i.val, and j is the smallest possible choice. If such a j does not exist, the next larger value is 0.

Return an array of integers answer, where answer[i] = next_larger(node_{i+1}).

Note that in the example inputs (not outputs) below, arrays such as [2,1,5] represent the serialization of a linked list with a head node value of 2, second node value of 1, and third node value of 5.

Read more »

Problem

Given a binary tree, find the length of the longest path where each node in the path has the same value. This path may or may not pass through the root.

The length of path between two nodes is represented by the number of edges between them.

Read more »

Problem

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

Read more »

Problem

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

Read more »