Halo

A magic place for coding

0%

Problem

Given a positive 32-bit integer n, you need to find the smallest 32-bit integer which has exactly the same digits existing in the integer n and is greater in value than n. If no such positive 32-bit integer exists, you need to return -1.

Example 1:

1
2
Input: 12
Output: 21

Example 2:

1
2
Input: 21
Output: -1
Read more »

Problem

Given a circular array (the next element of the last element is the first element of the array), print the Next Greater Number for every element. The Next Greater Number of a number x is the first greater number to its traversing-order next in the array, which means you could search circularly to find its next greater number. If it doesn’t exist, output -1 for this number.

Example 1:

1
2
3
4
5
Input: [1,2,1]
Output: [2,-1,2]
Explanation: The first 1's next greater number is 2;
The number 2 can't find next greater number;
The second 1's next greater number needs to search circularly, which is also 2.

Note: The length of given array won’t exceed 10000.

Read more »

Problem

You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of nums2. Find all the next greater numbers for nums1‘s elements in the corresponding places of nums2.

The Next Greater Number of a number x in nums1 is the first greater number to its right in nums2. If it does not exist, output -1 for this number.

Read more »

Problem

Given a 32-bit signed integer, reverse digits of an integer.

Example 1:

1
2
Input: 123
Output: 321

Example 2:

1
2
Input: -123
Output: -321

Example 3:

1
2
Input: 120
Output: 21

Note:
Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: $[−2^{31}, 2^{31} − 1]$. For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows.

Read more »

Problem

You are given two non-empty linked lists representing two non-negative integers. The most significant digit comes first and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Follow up:
What if you cannot modify the input lists? In other words, reversing the lists is not allowed.

Read more »

Problem

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Example:

1
2
3
Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
Explanation: 342 + 465 = 807.
Read more »