Halo

A magic place for coding

0%

LeetCode解题报告(321)-- 376. Wiggle Subsequence

Problem

Given an integer array nums, return the length of the longest wiggle sequence.

A wiggle sequence is a sequence where the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

  • For example, [1, 7, 4, 9, 2, 5] is a wiggle sequence because the differences (6, -3, 5, -7, 3) are alternately positive and negative.
  • In contrast, [1, 4, 7, 2, 5] and [1, 7, 4, 5, 5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

A subsequence is obtained by deleting some elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Example 1:

1
2
3
Input: nums = [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence.

Example 2:

1
2
3
Input: nums = [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Example 3:

1
2
Input: nums = [1,2,3,4,5,6,7,8,9]
Output: 2

Constraints:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

Follow up: Could you solve this in O(n) time?


Analysis

  题目给出一个数组,要求我们找出最长的摆动子序列。摆动的定义是两者之差在正负摆动。首先这类在数组中找子序列长度的题目一般就采用dp来做,但是这里的摆动怎么定义状态呢?实际上这个和股票买卖是有点类似的,一天买一天卖。我们分别定义两个方程:

  • up[i]表示第i个数字处于上摆时,所能构成的摆动序列的最大长度;
  • down[i]表示第i个数字出于下摆时,所能构成的摆动序列的最大长度。

  这样一来,我们就可以根据前一个位置来推出后一个位置的值了。我们根据前后两个数字值的大小关系来分别处理:

  1. nums[i] > nums[i - 1],说明后一个位置大,所以是上摆,结果就是前一个位置处于下摆的值加上1。同时因为这个位置不能下摆,所以下摆的值和前一个位置保持一致;
  2. 同理nums[i] < nums[i - 1],说明前一个位置大,所以是下摆,结果就是前一个位置处于上摆的值加上1。因为这个位置不能上摆,所以上摆的值和前一个位置上摆的值保持一直。
  3. 如果两者相等,则和前一个位置的值都保持一致。

Solution

  无。


Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
int size = nums.size();
vector<int> up(size, 0), down(size, 0);
up[0] = down[0] = 1;
for (int i = 1; i < size; i++) {
if (nums[i] > nums[i - 1]) {
up[i] = down[i - 1] + 1;
down[i] = down[i - 1];
} else if (nums[i] < nums[i - 1]) {
down[i] = up[i - 1] + 1;
up[i] = up[i - 1];
} else {
down[i] = down[i - 1];
up[i] = up[i - 1];
}
}
return max(down[size - 1], up[size - 1]);
}
};

Summary

  这道题也算是比较简单的dp题目,这类上下摆动、买卖的题目,很明显的特征就是,不但依赖于前一个状态,还要判断不同情况的处理逻辑。解决这类问题使用两个动态转移方程即可。这道题目的分享到这里,感谢你的支持!

Welcome to my other publishing channels