Problem
Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
1 | Input: word1 = "horse", word2 = "ros" |
Example 2:
1 | Input: word1 = "intention", word2 = "execution" |
Constraints:
0 <= word1.length, word2.length <= 500word1andword2consist of lowercase English letters.
Analysis
这是一道非常非常经典的动态规划题目,也是一个在工业实践中很常用的算法。首先我们来看什么是编辑距离。给定两个字符串word1和word2,通过一系列的操作把word1转化为word2,操作包括在word1中插入、删除、替换。这种两个字符串变换的题目本身就很适合二维dp。dp[i][j]表示把word1前i个字符转换成word2前j个字符所需要的最小编辑距离。
先来看base case。当word2长度为0时,要把word1变过去只能是删除所有的字符,所以dp[i][0] = i。同理,如果word1长度为0时,要把word1变成word2只能是添加字符,所以dp[0][j] = j。
然后来看转移方程。当word1[i - 1] == word2[j - 1]时,不需要编辑操作,所以dp[i][j] = dp[i - 1][j - 1];当word1[i - 1] != word2[j - 1]时,有三种操作:
word1[i - 1]替换成word2[j - 1],所以dp[i][j] = dp[i - 1][j - 1];- 删除掉
word1[i - 1],用下一个继续和word2[j - 1]匹配,所以dp[i][j] = dp[i - 1][j]; - 在
word1中增加word2[j - 1],所以dp[i][j] = dp[i][j - 1].
Solution
无
Code
1 | class Solution { |
Summary
这道题目是非常经典的dp,需要熟练掌握。它是很多字符串转换dp的原型,很多变形都是基于这道题目出的。这道题目的分享到这里,感谢你的支持!