Halo

A magic place for coding

0%

LeetCode解题报告(438)-- 1986. Minimum Number of Work Sessions to Finish the Tasks

Problem

There are n tasks assigned to you. The task times are represented as an integer array tasks of length n, where the ith task takes tasks[i] hours to finish. A work session is when you work for at most sessionTime consecutive hours and then take a break.

You should finish the given tasks in a way that satisfies the following conditions:

  • If you start a task in a work session, you must complete it in the same work session.
  • You can start a new task immediately after finishing the previous one.
  • You may complete the tasks in any order.

Given tasks and sessionTime, return the minimum number of work sessions needed to finish all the tasks following the conditions above.

The tests are generated such that sessionTime is greater than or equal to the maximum element in tasks[i].

Example 1:

1
2
3
4
5
Input: tasks = [1,2,3], sessionTime = 3
Output: 2
Explanation: You can finish the tasks in two work sessions.
- First work session: finish the first and the second tasks in 1 + 2 = 3 hours.
- Second work session: finish the third task in 3 hours.

Example 2:

1
2
3
4
5
Input: tasks = [3,1,3,1,1], sessionTime = 8
Output: 2
Explanation: You can finish the tasks in two work sessions.
- First work session: finish all the tasks except the last one in 3 + 1 + 3 + 1 = 8 hours.
- Second work session: finish the last task in 1 hour.

Example 3:

1
2
3
Input: tasks = [1,2,3,4,5], sessionTime = 15
Output: 1
Explanation: You can finish all the tasks in one work session.

Constraints:

  • n == tasks.length
  • 1 <= n <= 14
  • 1 <= tasks[i] <= 10
  • max(tasks[i]) <= sessionTime <= 15

Analysis

  题目给出一个tasks数组,以及一个sessionTime,每个session里面可以完成多个任务,每个任务只能在一个session内完成,问最少需要几个session。这个看起来是一个贪心问题,但实际上不可行,因为贪心并不能够充分地利用每一个session,所以还是需要把所有的组合都尝试一边。这道题目的突破口其实在Constraint里面,题目规定任务的数量不超过14个,一般来说不超过20都可以用状态压缩

  所谓状态压缩,就是用二进制表示状态,在运算过程中以10进制的形式表示,但归根到底我们只关注二进制的形式。以这道题目为例,假设有3个任务,那么终止状态就是111,如果任务1没有完成,那么就是110

  首先我们处理base case,我们有很多状态,每个状态的初始值是多少呢?如果这个状态能够在一个session中完成,那么就初始化为1,其余的就不是base case,在后面状态转移的时候计算。

  状态压缩的状态转移是有套路的,这里给出枚举二进制子集的模板:

1
2
3
4
5
6
7
// m => total states
for (int i = 1; i < m; ++i) {
// enumerate the subset of i
for (int j = i; j > 0; j = (j - 1) & i) {
// do sth
}
}

  稍微简单解释下,外层循环很容易理解,重点是内层循环怎么把状态i的子集枚举完毕。(j - 1) & i的作用是不停地去掉最后一个1,例如i = 10010,那么第一次的时候j = (10010 - 1) & 100010 = 10001 & 10010 = 10000,这样就是把低位的1去掉了。

  回到这个题目看状态转移,状态j是状态i的一个子集,比如说i = 1110,那么j就可能是1100,此时需要和0010一起组成i,所以这里用了异或运算取得补集,dp[i]只需要维护最小的就可以了。

Solution

  无。


Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public:
int minSessions(vector<int>& tasks, int sessionTime) {
int size = tasks.size();
int m = 1 << size;
vector<int> dp(m, 20);

for (int i = 1; i < m; ++i) {
int spend = 0, state = i, idx = 0;
while (state) {
int bit = state & 1;
if (bit) {
spend += tasks[idx];
}
state >>= 1;
idx++;
}
if (spend <= sessionTime) {
dp[i] = 1;
}
}

for (int i = 1; i < m; ++i) {
for (int j = i; j > 0; j = (j - 1) & i) {
dp[i] = min(dp[i], dp[j] + dp[i ^ j]);
}
}
return dp[m - 1];
}
};

Summary

  这道题目是状态压缩dp的典型应用,通过这道题目能够充分理解和使用状压dp,是一道非常好的题目。这道题目的分享到这里,感谢你的支持!

Welcome to my other publishing channels