# Halo

A magic place for coding

0%

## Problem

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Design an algorithm to insert a new node to a complete binary tree keeping it complete after the insertion.

Implement the CBTInserter class:

• CBTInserter(TreeNode root) Initializes the data structure with the root of the complete binary tree.
• int insert(int v) Inserts a TreeNode into the tree with value Node.val == val so that the tree remains complete, and returns the value of the parent of the inserted TreeNode.
• TreeNode get_root() Returns the root node of the tree.

## Problem

Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.

A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.

## Problem

Given two strings s and part, perform the following operation on s until all occurrences of the substring part are removed:

• Find the leftmost occurrence of the substring part and remove it from s.

Return s after removing all occurrences of part.

A substring is a contiguous sequence of characters in a string.

## Problem

You are given an integer array nums and an integer k. You can partition the array into at most k non-empty adjacent subarrays. The score of a partition is the sum of the averages of each subarray.

Note that the partition must use every integer in nums, and that the score is not necessarily an integer.

Return the maximum score you can achieve of all the possible partitions. Answers within 10-6 of the actual answer will be accepted.

## Problem

You are given an empty 2D binary grid grid of size m x n. The grid represents a map where 0‘s represent water and 1‘s represent land. Initially, all the cells of grid are water cells (i.e., all the cells are 0‘s).

We may perform an add land operation which turns the water at position into a land. You are given an array positions where positions[i] = [ri, ci] is the position (ri, ci) at which we should operate the ith operation.

Return an array of integers answer where answer[i] is the number of islands after turning the cell (ri, ci) into a land.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

## Problem

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course ai first if you want to take course bi.

• For example, the pair [0, 1] indicates that you have to take course 0 before you can take course 1.

Prerequisites can also be indirect. If course a is a prerequisite of course b, and course b is a prerequisite of course c, then course a is a prerequisite of course c.

You are also given an array queries where queries[j] = [uj, vj]. For the jth query, you should answer whether course uj is a prerequisite of course vj or not.

Return a boolean array answer, where answer[j] is the answer to the jth query.

## Problem

A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0] for all valid i.

For example, these are arithmetic sequences:

The following sequence is not arithmetic:

You are given an array of n integers, nums, and two arrays of m integers each, l and r, representing the m range queries, where the ith query is the range [l[i], r[i]]. All the arrays are 0-indexed.

Return a list of boolean elements answer, where answer[i] is true if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]] can be rearranged to form an arithmetic sequence, and false otherwise.

## Problem

Given the root of a binary tree, collect a tree’s nodes as if you were doing this:

• Collect all the leaf nodes.
• Remove all the leaf nodes.
• Repeat until the tree is empty.