Problem
Given a list of words, each word consists of English lowercase letters.
Let’s say word1 is a predecessor of word2 if and only if we can add exactly one letter anywhere in word1 to make it equal to word2. For example, "abc" is a predecessor of "abac".
A word chain is a sequence of words [word_1, word_2, ..., word_k] with k >= 1, where word_1 is a predecessor of word_2, word_2 is a predecessor of word_3, and so on.
Return the longest possible length of a word chain with words chosen from the given list of words.
Example 1:
1 | Input: words = ["a","b","ba","bca","bda","bdca"] |
Example 2:
1 | Input: words = ["xbc","pcxbcf","xb","cxbc","pcxbc"] |
Constraints:
1 <= words.length <= 10001 <= words[i].length <= 16words[i]only consists of English lowercase letters.
Analysis
这道题是单词链问题,题目给出一堆单词,形成链的条件是:后一个单词比前一个单词长度多1,而且仅有一个字符不同。题目要求的是最长单词链长度。
首先求最长的长度,这种就可以往dp上面靠。定义dp[i]为words[i]的单词链最长长度。如果words[j]是words[i]的predecessor,状态转移方程为dp[i] = max(dp[i], dp[j] + 1)。所以重点就在于如何判断是predecessor。
首先是长度,前一个单词的长度假设为x,则后一个单词必须是x + 1。长度满足要求后,再检查不同的字符是否只有一个,如果都满足则说明是predecessor。
由于这里检查对长度有限制,所以我们先对所有的单词按照长度进行排序,然后从左到右开始遍历,先遍历长度较短的。
Solution
无
Code
1 | class Solution { |
Summary
这道题是dp经典题之一,dp的定义和状态转移都比较简单,难点是dp转移时的判断逻辑。这道题目的分享到这里,感谢你的支持!