## beta-recsys v0.1 版本发布啦！🎉🎉🎉

我们的 beta-recsys v0. 1 版本发布了！这是一个基于 pytorch 的推荐系统来源平台，我们致力于整合更多的推荐系统模型，为推荐系统这个社区提供一个公平比较的平台，同时推进代码的可复现性！**Github**: https://github.com/beta-team/beta-recsys

**teaser video:**https://vimeo.com/456391232

0%

我们的 beta-recsys v0. 1 版本发布了！这是一个基于 pytorch 的推荐系统来源平台，我们致力于整合更多的推荐系统模型，为推荐系统这个社区提供一个公平比较的平台，同时推进代码的可复现性！**Github**: https://github.com/beta-team/beta-recsys

**teaser video:**https://vimeo.com/456391232

In an alien language, surprisingly they also use english lowercase letters, but possibly in a different `order`

. The `order`

of the alphabet is some permutation of lowercase letters.

Given a sequence of `words`

written in the alien language, and the `order`

of the alphabet, return `true`

if and only if the given `words`

are sorted lexicographicaly in this alien language.

You are given a string `s`

of even length. Split this string into two halves of equal lengths, and let `a`

be the first half and `b`

be the second half.

Two strings are **alike** if they have the same number of vowels (`'a'`

, `'e'`

, `'i'`

, `'o'`

, `'u'`

, `'A'`

, `'E'`

, `'I'`

, `'O'`

, `'U'`

). Notice that `s`

contains uppercase and lowercase letters.

Return `true`

*if* `a`

*and* `b`

*are alike*. Otherwise, return

`false`

.You have an array `arr`

of length `n`

where `arr [i] = (2 * i) + 1`

for all valid values of `i`

(i.e. `0 <= i < n`

).

In one operation, you can select two indices `x`

and `y`

where `0 <= x, y < n`

and subtract `1`

from `arr [x]`

and add `1`

to `arr [y]`

(i.e. perform `arr [x] -=1`

and `arr [y] += 1`

). The goal is to make all the elements of the array **equal**. It is **guaranteed** that all the elements of the array can be made equal using some operations.

Given an integer `n`

, the length of the array. Return *the minimum number of operations* needed to make all the elements of arr equal.

You are given an integer array `nums`

of length `n`

which represents a permutation of all the integers in the range `[0, n - 1]`

.

The number of **global inversions** is the number of the different pairs `(i, j)`

where:

`0 <= i < j < n`

`nums [i] > nums [j]`

The number of **local inversions** is the number of indices `i`

where:

`0 <= i < n - 1`

`nums [i] > nums [i + 1]`

Return `true`

*if the number of global inversions is equal to the number of local inversions*.